Chlorella vulgaris or Spirulina platensis mitigate lead acetate-induced testicular oxidative stress and apoptosis.

PMID: 

Environ Sci Pollut Res Int. 2021 Mar 22. Epub 2021 Mar 22. PMID: 33754266

Abstract Title: 

Chlorella vulgaris or Spirulina platensis mitigate lead acetate-induced testicular oxidative stress and apoptosis with regard to androgen receptor expression in rats.

Abstract: 

The current research was constructed to throw the light on the protective possibility of Chlorella vulgaris (C. vulgaris) and Spirulina platensis (S. platensis) against lead acetate-promoted testicular dysfunction in male rats. Forty rats were classified into four groups: (i) control, (ii) rats received lead acetate (30 mg/kg bw), (iii) rats concomitantly received lead acetate and C. vulgaris (300 mg/kg bw), (vi) rats were simultaneously treated with lead acetate and S. platensis (300 mg/kg bw) via oral gavage for 8 weeks. Lead acetate promoted testicular injury as expressed with fall in reproductive organ weights and gonadosomatic index (GSI). Lead acetate disrupted spermatogenesis as indicated by sperm cell count reduction and increased sperm malformation percentage. Lead acetate-deteriorated steroidogenesis is evoked by minimized serum testosterone along with maximized follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels. Testicular oxidative, inflammatory, and apoptotic cascades are revealed by elevated acid phosphatase (ACP) and sorbitol dehydrogenase (SDH) serum leakage, declined testicular total antioxidative capacity (TAC) with elevated total oxidative capacity (TOC), tumor necrosis factor alpha (TNF-α), caspase-3 levels, lessened androgen receptor (AR) expression, and histopathological lesions against control. Our research highlights that C. vulgaris or S. platensis therapy can modulate lead acetate-promoted testicular dysfunction via their antioxidant activity as expressed by elevated TAC andreduced TOC, immunomodulatory effect as indicated by lessened TNF-α level, and anti-apoptotic potential that was revealed by minimized caspase-3 levels. As well as restoration of testicular histoarchitecture, androgen receptor, steroidogenesis, and spermatogenesis were detected with better impactsto S. platensis comparing with C. vulgaris. Therefore, further clinical trials are needed to test S. platensis and C. vulgaris as a promising candidate in treating male infertility.

read more

Close
Menu